Post

2025-09-08-Digital and Optimal Control 2 Analysis of discrete-time systems using *z*-transforms

2025-09-08-Digital and Optimal Control 2 Analysis of discrete-time systems using *z*-transforms

ELEC-E8101: Digital and Optimal Control 2 Analysis of discrete-time systems using z-transforms

In the previous lecture. . .

We

  • Discussed the importance of feedback control
  • Listed, advantages and disadvantages of digital control
  • Discussed the implications of converting continuous-time models into discrete-time models
  • Derived and used the properties of Laplace transforms to represent continuous-time systems

Questions and feedback from last week

  • Good recap and reminder of what parts of the memory need to be refreshed
  • In-class exercise and examples were good
  • There could have been some hints after some time in the self study exercise
  • A bit slower
  • What is the difference between the design principles?

Discrete-time controller design

There are 2 main design approaches

  • Discretize the analog controller image.png

  • Discretize the process and do the entire design in discrete time image.png

Approach 1

  • Discretize the analog controller image.png

  • Assume we have a transfer function $G(s)$ given in the Laplace domain that describes our process
  • We now design a controller $K(s)$ in the Laplace domain
  • Then we discretize this controller so we can implement it on a microcontroller
  • This is what we did in the disk drive example last week!

Approach 2

  • Discretize the process and do the entire design in discrete time

  • Assume again we have a model of the process in the Laplace domain, $G(s)$
  • We now discretize the process (how? → next week), i.e., we get a transfer function $H(z)$ in the z-domain (we will discuss the z-domain today)
  • Then, we design the controller $K(z)$ directly using the discrete-time transfer function

Learning outcomes

By the end of this lecture, you should be able to:

  • Explain the importance of z-transforms for analyzing discrete-time systems
  • Derive and use the properties of z-transforms
  • Represent discrete-time sequences in z-transform
  • Analyze discrete-time systems
  • Define the transfer function of a linear time-invariant (LTI) system
  • Determine whether or not the transfer function is causal and stable

Recap and introduction

image.png

  • In the last lecture, we discussed the Laplace transform
  • It turns differential equations into algebraic terms with respect to s
  • For discrete-time system, we use the z-transform
  • z-transform turns difference equations into algebraic terms with respect to z

Introduction

  • Analog systems are designed and analyzed with the use of Laplace transforms
  • Discrete-time systems are analyzed using a similar technique, called z-transforms

Historical note During and after World War II, a lot of activity was devoted to analysis of radar systems. These systems are naturally sampled because a position measurement is obtained once per antenna revolution. First steps by Hurewicz (1947) – later defined as the z-transform by Ragazzini and Zadeh (1952).

  • Basic idea the same for Laplace and z-transforms:
    • After determining the impulse response of the system, the response to any other input signal can be extracted by simple arithmetic operations
    • The behavior and the stability of the system can be predicted from the zeros and poles of the transfer function

Recap: why are we interested in digital control?

  • Many application examples use microcontrollers, i.e., work in discrete time: robots, cars, chemical processes, …
  • But the underlying dynamics are continuous…
  • → We need to discretize them, which we will discuss in the next lecture
  • For today, let’s consider a system that naturally evolves in discrete time

Digital inventory management system

  • Consider a system that tracks and controls the inventory of items in a warehouse
  • The inventory levels $I_k$ are updated at discrete time intervals $k \to k + 1$ (e.g., daily or weekly), and decisions about replenishments $R_k$ are made at these intervals based on the current inventory level, the target inventory level $I_{\text{target}}$, and demand $D_k$
  • We have
    \(I_{k+1} = I_k - D_k + R_k = I_k - D_k + K_p (I_{\text{target}} - I_k) + D_k\)
  • How do we need to choose $K_p$ to have $I_k \to I_{\text{target}}$ as $k \to \infty$? image.png

From Laplace transform to z-transform

  • The Laplace transform is given by
    \(\mathcal{L}\{x(t)\} := X(s) = \int_{t=-\infty}^{+\infty} x(t) e^{-st} \, dt\)

  • s is a complex number and substituting $s = \sigma + j\omega$, we get
    \(X(\sigma, \omega) = \int_{t=-\infty}^{+\infty} x(t) e^{-(\sigma + j \omega) t} \, dt\)

  • Step 1: change the signal from continuous time to discrete, i.e., $x(t) \rightarrow x_k$
    \(X(\sigma, \omega) = \sum_{k=-\infty}^{+\infty} x_k e^{-(\sigma + j \omega) k}\)

  • Step 2: define $r = e^\sigma$ and $z = r e^{j \omega}$ to obtain the standard form of the z-transform:
    \(\mathcal{Z}(x_k) := X(z) = \sum_{k=-\infty}^{+\infty} x_k z^{-k}\)

Example: discrete-time impulse

image.png

  • The sequence ${ f_0, 0, 0, \ldots }$ is an impulse (pulse) with strength $f_0$, i.e.,
\[f_k = f_0 \delta_k\]

where

\[\delta_k = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}\]
  • Find the $z$-transform of $f_k$

Example: discrete-time impulse – solution

image.png

  • Write down the definition of the z-transform
\[\mathcal{Z}(f_{k}) = \sum_{k=-\infty}^{\infty} f_{k} z^{-k}\]
  • Insert the discrete-time impulse
\[\sum_{k=-\infty}^{\infty} f_{k} z^{-k} = \sum_{k=-\infty}^{\infty} f_{0} \delta_{k} z^{-k} = f_{0} \left( \ldots + \delta_{-2} z^{2} + \delta_{-1} z^{1} + \delta_{0} z^{0} + \delta_{1} z^{-1} + \delta_{2} z^{-2} + \ldots \right)\]
  • Insert definition of the impulse
\[f_{0} \left( \ldots + 0 z^{2} + 0 z^{1} + 1 z^{0} + 0 z^{-1} + 0 z^{-2} + \ldots \right) = f_{0}\]

Example: discrete-time (unit) step function

  • The sequence ${1, 1, 1, \ldots }$ is a step function with strength 1, i.e.,
    \(u_k = \begin{cases} 1 & \text{if } k \geq 0 \\ 0 & \text{if } k < 0 \end{cases}\)

  • The absolute time at instant $k$ is $kT$, where $T$ is the sampling interval
  • Find the z-transform of $u_k$

Example: discrete-time (unit) step function – solution

  • Start again from the definition of the z-transform and insert the step function
\[\mathcal{Z}(u_k) = \sum_{k=-\infty}^{\infty} u_k z^{-k} = \sum_{k=0}^{\infty} z^{-k} = 1 + z^{-1} + z^{-2} + \ldots\]

→ Geometric series

  • General geometric series:
\[\sum_{k=0}^{\infty} a r^k\]
  • Converges if $r< 1$. Then:
\[\sum_{k=0}^{\infty} a r^k = \frac{a}{1-r}\]
  • In our case:
\[a = 1, \quad r = z^{-1}\]
→ If $\leftz^{-1} \right< 1$, we have
\[\mathcal{Z}(u_k) = \frac{1}{1 - z^{-1}} = \frac{z}{z-1}\]

Example: discrete-time exponential function

  • Now, we consider the function
\[x_k = a^k u_k, \quad a \in \mathbb{R}\]

where

\[u_k = \begin{cases} 1 & \text{if } k \geq 0 \\ 0 & \text{if } k < 0 \end{cases}\]
  • Find the z-transform of $x_k$

Example: discrete-time exponential function – solution

  • As before:
\[\mathcal{Z}(x_k) = \sum_{k=-\infty}^{\infty} x_k z^{-k} = \sum_{k=0}^{\infty} a^k z^{-k} = \sum_{k=0}^{\infty} \left( a z^{-1} \right)^k = 1 + a z^{-1} + \left( a z^{-1} \right)^2 + \ldots\]

→ Again geometric series

  • Converges if $\lefta z^{-1} \right< 1$. Then
\[\mathcal{Z}(x_k) = \frac{1}{1 - a z^{-1}} = \frac{z}{z - a}\]\[\text{ROC}_x = \{ z \in \mathbb{C} : |a z^{-1}| < 1 \}\]

More examples

  • Consider the function
    \(x_k = -a^k u_{-k-1}, \quad a \in \mathbb{R}\)
    where
    \(u_k = \begin{cases} 1 & \text{if } k \geq 0 \\ 0 & \text{if } k < 0 \end{cases}\)

  • Find the z-transform of $x_k$

More examples – solution

  • As before
    \(\mathcal{Z}(x_k) = \sum_{k=-\infty}^\infty -a^k u_{-k-1} z^{-k} = -\sum_{k=-\infty}^{-1} (a z^{-1})^k = -\sum_{k=1}^\infty (a^{-1} z)^k = 1 - \sum_{k=0}^\infty (a^{-1} z)^k\)

  • Limit exists if $\big| a^{-1} z \big| < 1$. Then,
    \(X(z) = 1 - \frac{1}{1 - a^{-1} z} = \frac{z}{z - a}\)

  • And the region of convergence is
    \(\mathrm{ROC}_x = \{ z \in \mathbb{C} : |a^{-1} z| < 1 \}\)

In-class exercise

  • Find the z-transform and region of convergence (ROC) of the following difference equation
    \(x_k = a^k u_k - b^k u_{-k-1}, \quad a, b \in \mathbb{R}\)
    where
    \(u_k = \begin{cases} 1 & \text{if } k \geq 0 \\ 0 & \text{if } k < 0 \end{cases}\)

  • When is the ROC an empty set?

In-class exercise – solution

  • We already found the z-transforms of the two terms in the previous examples
    → We can exploit the linearity of the z-transform (we will prove it in two slides):
\[X(z) = \frac{z}{z - a} + \frac{z}{z - b}\]
  • Region of convergence: we need $\leftaz^{-1}\right< 1$ and $\leftb^{-1}z\right< 1$
  • Thus, we have $z>a$ and $z<b$
  • If $a>b$: $\text{ROC}_x = \emptyset$
  • If $a<b$: $\text{ROC}_x = { z \in \mathbb{C} :a<z<b}$

Right-sided z-transforms

  • Right-sided z-transforms are defined as
    \(\mathcal{Z}_{+}(x_k) := \mathcal{Z}(x_k u_k)\)
    where
    \(u_k = \begin{cases} 1 & \text{if } k \geq 0 \\ 0 & \text{if } k < 0 \end{cases}\)

  • That is,
    \(\mathcal{Z}_{+}(x_k) := X_{+}(z) = \sum_{k=0}^{+\infty} x_k z^{-k}\)

  • We will mostly use right-sided z-transforms from now on

Properties of z-transforms

  • Last week, we discussed different properties of Laplace transforms
  • For example, linearity, or that the Laplace transform of the time derivative of f(t) is sF(s) − f(0)
  • The z-transform has similar properties

Linearity

  • Let $x_k$ be the linear combination of $x_k^{(1)}$ and $x_k^{(2)}$ with ROC $\Pi_1$ and $\Pi_2$
  • Then:
\[X(z) = \mathcal{Z}(a x_k^{(1)} + b x_k^{(2)}) = \sum_{k=0}^{\infty} (a x_k^{(1)} + b x_k^{(2)}) z^{-k}\] \[= a \sum_{k=0}^{\infty} x_k^{(1)} z^{-k} + b \sum_{k=0}^{\infty} x_k^{(2)} z^{-k} = a X^{(1)}(z) + b X^{(2)}(z)\]
  • The ROC is then $\Pi \supseteq \Pi_1 \cap \Pi_2$. Note that $\Pi$ can be bigger

Example

  • Consider the function
    \(x_k = a^k u_k - a^k u_{k-1}, \quad a \in \mathbb{R}\)

  • These are two exponential functions, thus,
    \(\Pi_1 = \Pi_2 = \{ z \in \mathbb{C} : | a z^{-1} | < 1 \}\)

  • For the sum, we have
    \(x(z) = \sum_{k=-\infty}^{\infty} (a^k u_k - a^k u_{k-1}) z^{-k} = \sum_{k=0}^{\infty} (a z^{-1})^k - \sum_{k=1}^{\infty} (a z^{-1})^k = 1\)

  • Therefore,
    \(\Pi = \{ z \in \mathbb{C} \supset \Pi_1 \cap \Pi_2 \}\)

Properties of right-sided z-transforms

Delays

\[\mathcal{Z}_+\{x_{k-k_0}\} = z^{-k_0} \left( X_+(z) + \sum_{m=-k_0}^{-1} x_m z^{-m} \right), \quad \text{ROC}_x \text{ except } z=0\]

Proof

\[\begin{aligned} \mathcal{Z}_+\{x_{k-k_0}\} &= \sum_{k=0}^{\infty} x_{k-k_0} z^{-k} \\ &= \sum_{m=-k_0}^{\infty} x_m z^{-(m+k_0)}, \quad m := k - k_0 \\ &= z^{-k_0} \left( \sum_{m=0}^{\infty} x_m z^{-m} + \sum_{m=-k_0}^{-1} x_m z^{-m} \right) \end{aligned}\]

Prediction

\[\mathcal{Z}_{+}\{x_{k+k_0}\} = z^{k_0} \left( X_+(z) - \sum_{m=0}^{k_0-1} x_m z^{-m} \right), \quad \text{ROC}_x \text{ except } z = \infty\]

Proof

\(\begin{aligned} \mathcal{Z}_{+}\{x_{k+k_0}\} &= \sum_{k=0}^\infty x_{k+k_0} z^{-k} \\ &= \sum_{m=k_0}^\infty x_m z^{-(m-k_0)}, \quad m := k + k_0 \\ &= z^{k_0} \sum_{m=k_0}^\infty x_m z^{-m} = z^{k_0} \left( \sum_{m=0}^\infty x_m z^{-m} - \sum_{m=0}^{k_0-1} x_m z^{-m} \right) \end{aligned}\)

Properties of z-transforms

Differentiation in the z-domain

\[\{ x_k \xleftrightarrow[z]{} X(z), \text{ROC}_x \} \implies \left\{ k x_k \xleftrightarrow[z]{} -z \frac{d}{dz} X(z), \text{ROC}_x, \text{ possibly except } z=0 \right\}\]

Proof

\[-z \frac{d}{dz} X(z) = -z \frac{d}{dz} \left( \sum_{k=0}^{\infty} x_k z^{-k} \right)\] \[= z \sum_{k=0}^{\infty} k x_k z^{-k-1}\] \[= \sum_{k=0}^{\infty} k x_k z^{-k} \quad \underbrace{}_{\mathcal{Z} \{ k x_k \}}\]

Initial value theorem (IVT)

\[x_0 = \lim_{z \to \infty} X(z)\]

Proof

\[X(z) = \sum_{k=0}^{\infty} x_k z^{-k} = x_0 \underbrace{z^{-0}}_{=1} + x_1 \underbrace{z^{-1}}_{\to 0 \text{ as } z \to \infty} + \ldots\] \[\lim_{z \to \infty} X(z) = x_0\]

Final value theorem (FVT): for a causal stable (all poles in the unit circle) system, we have

\[x_{\infty} := \lim_{k \to \infty} x_k = \lim_{z \to 1} (z - 1)X(z)\]

Proof
We can write $x_k$ as

\[x_k = (x_0 - x_{-1}) + (x_1 - x_0) + (x_2 - x_1) + \ldots + (x_k - x_{k-1}), \text{ where } x_{-1} = 0\]

Now we take the limit

\[\lim_{k \to \infty} x_k = \lim_{k \to \infty} \lim_{z \to 1} \left( (x_0 - x_{-1})z^0 + (x_1 - x_0)z^{-1} + (x_2 - x_1)z^{-2} + \ldots \right)\] \[= \lim_{z \to 1} \sum_{k=0}^{\infty} (x_k - x_{k-1}) z^{-k} = \lim_{z \to 1} \left( X(z) - X(z-1) \right)\] \[= \lim_{z \to 1} \left( X(z) - z^{-1} X(z) \right)\]
PropertyExpression
Linearity$\mathcal{Z}\left(ax_k^1 + bx_k^2\right) = a \mathcal{Z}\left(x_k^1\right) + b \mathcal{Z}\left(x_k^2\right)$
Delays$\mathcal{Z}+{x{k-k_0}} = z^{-k_0} \left( X_+(z) + \sum_{m=-k_0}^{-1} x_m z^{-m} \right)$
ROC$_x$ except $z=0$
Predictions$\mathcal{Z}+{x{k+k_0}} = z^{k_0} \left( X_+(z) - \sum_{m=0}^{k_0-1} x_m z^{-m} \right)$
ROC$_x$ except $z=\infty$
Differentiation${x_k \xleftrightarrow{\mathcal{Z}} X(z), \text{ROC}_x} \implies \left{ kx_k \xleftrightarrow{\mathcal{Z}} -z \frac{d}{dz} X(z), \text{ROC}_x, \text{ possibly except } z=0 \right}$
Initial value theorem$x_0 = \lim_{z \to \infty} X(z)$
Final value theorem$x_\infty := \lim_{k \to \infty} x_k = \lim_{z \to 1} (z - 1) X(z)$

Inverse z-transform

image.png

  • Implementing the z-transform takes us from the discrete-time domain to the z-domain
  • The opposite procedure is the inverse z-transform
  • Derivation of the inverse z-transform via the Fourier transform (𝓕)
\[X(z)\big|_{z=re^{j\omega}} = \mathcal{F}\{ x_k r^{-k} \}, \text{ for } r \text{ such that } z \in \text{ROC}\] \[\implies x_k r^{-k} = \mathcal{F}^{-1}\{X(re^{j\omega})\} \text{ (inverse Fourier transform) }\] \[\implies x_k = r^k \frac{1}{2\pi} \int_{\langle 2\pi \rangle} X(re^{j\omega}) e^{j\omega k} d\omega\] \[\implies x_k = \frac{1}{2\pi} \int_{\langle 2\pi \rangle} X(re^{j\omega}) (re^{j\omega})^k d\omega\]
  • Now, we want to replace $\omega$ with z
    \(z = re^{j\omega}\) \(\mathrm{d}z = jre^{j\omega} \mathrm{d}\omega = jz \mathrm{d}\omega\) \(\implies \mathrm{d}\omega = \frac{1}{j} z^{-1} \mathrm{d}z\) with $|z| = r$ and $\omega = 0 \dots 2\pi$

  • Therefore,
    \(x_k = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2 \pi j} \oint X(z) z^{k-1} \mathrm{d}z\)

  • Anti-clockwise integration over a closed contour with the ROC of $X(z)$ which includes the intersection of real and imaginary axes of the $z$-complex plane

  • Calculation of the integral is quite hard!
  • Usually, instead of calculating, we look up the transforms in a table
  • These tables only contain some basic functions and cannot cover all cases
  • 3 methods for calculating the inverse transform of a function $X(z)$
    • Method of power series expansion
    • Method of partial fraction expansion
    • Method of complex integration (via the residue theorem)

Partial fraction expansion

  • Example: find $x_k$ from $X(z)$ given by
    \(X(z) = \frac{1 + 0.5 z^{-1} - 0.32 z^{-2}}{(1 - 0.5 z^{-1})(1 - 0.2 z^{-1})^2}, \quad |z| > 0.5\)

  • We perform partial fraction expansion
    \(X(z) = \frac{A}{1 - 0.5 z^{-1}} + \frac{B + C z^{-1}}{(1 - 0.2 z^{-1})^2}\)

  • From the 2 equations above, we get
    \(A (1 - 0.2 z^{-1})^2 + (B + C z^{-1})(1 - 0.5 z^{-1}) = 1 + 0.5 z^{-1} - 0.32 z^{-2}\)

  • For $z^{-1} = 2$:
    \(0.36 A = 0.72 \implies A = 2\)

  • For $z^{-1} = 0$:
    \(A + B = 1 \implies B = 1 - A = 1 - 2 \implies B = -1\)

  • For $z^{-1} = 1$:
    \(0.64 A + 0.5 B + 0.5 C = 1.18 \implies C = 2 (1.18 - 1.28 + 0.5) \implies C = 0.8\)

  • After doing the partial fraction expansion

\[X(z) = \frac{2}{1 - 0.5 z^{-1}} + \frac{-1 + 0.8 z^{-1}}{(1 - 0.2 z^{-1})^2} = \frac{2}{1 - 0.5 z^{-1}} - \frac{1}{1 - 0.2 z^{-1}} + \frac{0.6 z^{-1}}{(1 - 0.2 z^{-1})^2}\] \[X(z) = \frac{2z}{z - 0.5} - \frac{z}{z - 0.2} + \frac{0.6z}{(z - 0.2)^2}\] \[\implies x_k = 2 (0.5)^k u_k - (0.2)^k u_k + 3k (0.2)^k u_k\]

Power series expansion

  • Example: find $x_k$ from $X(z)$ given by
\[X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|\]
  • Performing power series expansion
\[\frac{1}{1 - az^{-1}} = 1 + az^{-1} + a^2 z^{-2} + \ldots \quad (\text{converges since } |az^{-1}| < 1)\] \[\implies x_0 = 1, \; x_1 = a, \; x_2 = a^2 \implies x_k = a^k u_k\]

Discrete-time systems

  • Example: a first-order difference equation
\[y_{k+1} - ay_k = \delta_k, \quad y_0 = 0\]

and $\delta_k$ is the impulse given by

\[\delta_k = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}\]
  • Find a solution for $y_k$!

Discrete-time systems – example solution

  • Let’s make some calculations directly from the equation:
\[\begin{aligned} y_1 &= ay_0 + \delta_0 &&= 1 \\ y_2 &= ay_1 + \delta_1 &&= a \\ y_3 &= ay_2 + \delta_2 &&= a^2 \\ \vdots \\ y_k &= ay_{k-1} + \delta_{k-1} &&= a^{k-1} \end{aligned}\]

Results: pulse sequence

\[\{a^k\}, k = 0,1,2,\ldots\] \[\mathcal{Z}(y_k) = \sum_{k=1}^{\infty} a^{k-1}z^{-k} = a^{-1} \sum_{k=1}^{\infty} (az^{-1})^{k}\] \[= a^{-1} \frac{az^{-1}}{1 - az^{-1}} = \frac{1}{z - a}, \quad |az^{-1}| < 1\]
  • Alternative:
\[zY(z) - z \underbrace{y_0}_{=0} - aY(z) = 1 \quad \Longrightarrow \quad (z - a) Y(z) = 1\] \[\Longrightarrow \quad Y(z) = \frac{1}{z - a} = z^{-1} \frac{z}{z - a} \quad \Longrightarrow \quad y_k = a^{k-1} u_{k-1}\]

Discrete-time systems

  • In general, we can describe a discrete-time system as follows

    \[X(z) \xrightarrow{x_k} H(z) \xrightarrow{y_k} Y(z)\]
  • $x_k$ represents the input to the system and $y_k$ its output
  • Then, we have

    \[Y(z) = H(z)X(z)\]
  • $H(z)$ is called the transfer function of the system
  • For our previous example

    \[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z-a}\]
  • Initial conditions are ignored

Transfer function of a difference equation

  • The difference equation is given by (initial conditions are zero)
\[\sum_{n=0}^{N} a_n y_{k-n} = \sum_{n=0}^{M} b_n x_{k-n}\] \[\Longrightarrow \sum_{n=0}^N a_n z^{-n} Y(z) = \sum_{n=0}^M b_n z^{-n} X(z) \quad \Longrightarrow \quad H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{n=0}^M b_n z^{-n}}{\sum_{n=0}^N a_n z^{-n}}\]
  • We can write it in form of a product

\(H(z) = \frac{b_{\text{M}} \prod_{i=1}^M (z^{-1} - \sigma_i^{-1})}{a_{\text{N}} \prod_{i=1}^N (z^{-1} - \lambda_i^{-1})} = \frac{b'_{\text{M}} \prod_{i=1}^M (z - \tilde{\sigma}_i)}{a'_{\text{N}} \prod_{i=1}^N (z - \tilde{\lambda}_i)}\) image.png

Observations

  • Specification of z-transform requires both algebraic expression and ROC
  • Rational z-transforms are obtained if the signal is a linear combination of exponentials
    \(Y(z) = \frac{N(z)}{D(z)}\)
  • Rational z-transforms are completely characterized by their poles and zeros (except for gain)

Example

  • Let’s consider an example transfer function:

\(H(z) = \frac{z}{(z + 0.6)(z - 0.9)}\) image.png

Learning outcomes

By the end of this lecture, you should be able to

  • Explain the importance of z-transforms for analyzing discrete-time systems
  • Derive and use the properties of z-transforms
  • Represent discrete-time sequences in z-transform
  • Analyze discrete-time systems
  • Define the transfer function of a linear time-invariant (LTI) system
  • Determine whether or not the transfer function is causal and stable
This post is licensed under CC BY 4.0 by the author.

Trending Tags