Post

Robotics Review

10倒计算题

  1. L2 气缸压力
  2. 机械臂 关节 自由度 冗余度
  3. 坐标系变换 transformation 旋转矩阵
  4. alpha a d theta Manipulator Kinematics
  5. 车 omega 差速
  6. 高斯误差 s x t theta
  7. hk sk qk
  8. 雅可比矩阵 (带入?)
  9. ? Localisation
  10. ??控制 PID
  11. A* 路径规划
  12. Probabilistic Mapping 算概率

1 Cylinders

image-20241202180233818

2

  • 每个刚体需要 6 个参数来描述 – 3 个位置 – 3 个方向

n 个移动连杆 → 6n 个参数 n 个关节 → 5n 个约束 有多少个自由度? 6n – 5n = n 个自由度

$m_0$是末端执行器的自由度

max -> 6

冗余度 (n > m) n - m

3 坐标系变换 旋转矩阵

  • $^B_AR$ 坐标系A到坐标系B的旋转矩阵
\[^AP =\ ^A_BR\ ^BP +\ ^AP_{Borg} \\\] \[\begin{bmatrix} ^AP \\ 1 \end{bmatrix} = \begin{bmatrix} ^A_BR &\ ^AP_{Borg} \\ 0\ 0\ 0 & 1 \end{bmatrix} = \begin{bmatrix} ^BP\\ 1 \end{bmatrix}\]

eg.image-20241202184007196

  • Inverse Transform 逆变换 \(^A_B T = \begin{bmatrix} ^A_B R & ^A P_{Borg} \\ 0\ 0\ 0 & 1 \end{bmatrix}\)

    \[^A_B T^{-1} = ^B_A T = \begin{bmatrix} ^A_B R^T & -^A_B R^T \cdot\ ^AP_{Borg} \\ 0\ 0\ 0 & 1 \end{bmatrix}\]

4 alpha a d theta (L5)

右手定则

右手法则是判断旋转角度正负的基础规则:

  • 规则:用右手握住旋转轴,拇指指向轴的正方向(例如,$Z_i$轴的正方向),其余四指的弯曲方向为正旋转方向
  • 正角度:如果旋转是沿着右手四指弯曲的方向,则角度为正。
  • 负角度:如果旋转是反方向(即与右手四指弯曲方向相反),则角度为负。

$\alpha_{i-1}$:绕$x_{i-1}$轴,从$z_{i-1}$到$z_i$的夹角。

$a_{i-1}$:沿$x_{i-1}$轴,从$z_{i-1}$到$z_i$的距离。(与x垂直)

$d_i$:沿$z_i$轴,从$x_{i-1}$到$x_i$的距离。

$\theta_i$:绕$z_i$轴,从$x_{i-1}$到$x_i$的夹角 (与z垂直)

  • Forward Kinematics:
    \(^{i-1}_iT = ^{i-1}_RT\ ^R_QT\ ^Q_PT\ ^P_iT\)

    \[{}^{i-1}_i T(\alpha_{i-1}, a_{i-1}, \theta_i, d_i) = R_x(\alpha_{i-1}) D_x(a_{i-1}) R_z(\theta_i) D_z(d_i)\] \[{}^{i-1}_i T = \begin{bmatrix} c\theta_i & -s\theta_i c\alpha_{i-1} & s\theta_i s\alpha_{i-1} & a_{i-1} c\theta_i \\ s\theta_i & c\theta_i c\alpha_{i-1} & -c\theta_i s\alpha_{i-1} & a_{i-1} s\theta_i \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}\]

eg.1.

image-20241202205115377

eg.2. ??

image-20241202205435270

eg.3.

image-20241202211848479

eg.4.

模拟题

1.

D = 10cm = 100mm

d = 4cm = 40mm

P = 5MPa

1) $A_1 = \pi \times (D/2)^2 = 7850 mm^2$ $F_{push} = P \times A_1 = 39250 N$ 2) $A_2 = \pi \times(d/2)^2 = 6593mm^2$ $F_{pull} = P\times(A_1-A_2) = 32970N$

    1. DOF = 8
    2. rongyu = 8 - 6 = 2
  1. 0 $90^{\circ}$ 绕轴旋转

  2. image-20241205214126483
import numpy as np

def dh_transform_matrix(a, alpha, theta, d):
    # Convert degrees to radians for trigonometric calculations
    alpha_rad = np.radians(alpha)
    theta_rad = np.radians(theta)
    
    # Construct the transformation matrix
    T = np.array([
        [np.cos(theta_rad), -np.sin(theta_rad) * np.cos(alpha_rad), np.sin(theta_rad) * np.sin(alpha_rad), a * np.cos(theta_rad)],
        [np.sin(theta_rad), np.cos(theta_rad) * np.cos(alpha_rad), -np.cos(theta_rad) * np.sin(alpha_rad), a * np.sin(theta_rad)],
        [0, np.sin(alpha_rad), np.cos(alpha_rad), d],
        [0, 0, 0, 1]
    ])
    
    return T

# Given parameters
a = 0.5
alpha = 90
theta = 30
d = 0.2

# Calculate the matrix
transformation_matrix = dh_transform_matrix(a, alpha, theta, d)

transformation_matrix

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from sympy import symbols, cos, sin, Matrix, pi, sqrt

def dh_transform_matrix_symbolic(a, alpha, theta, d):
    # Convert degrees to radians
    alpha_rad = alpha * pi / 180
    theta_rad = theta * pi / 180

    # Construct the symbolic transformation matrix
    T = Matrix([
        [cos(theta_rad), -sin(theta_rad) * cos(alpha_rad), sin(theta_rad) * sin(alpha_rad), a * cos(theta_rad)],
        [sin(theta_rad), cos(theta_rad) * cos(alpha_rad), -cos(theta_rad) * sin(alpha_rad), a * sin(theta_rad)],
        [0, sin(alpha_rad), cos(alpha_rad), d],
        [0, 0, 0, 1]
    ])
    return T

# Given parameters
a = 0.5
alpha = 90  # degrees
theta = 30  # degrees
d = 0.2

# Compute the symbolic transformation matrix
transformation_matrix_symbolic = dh_transform_matrix_symbolic(a, alpha, theta, d)

# Display the matrix
transformation_matrix_symbolic

  1. ? 障碍物规避 力优化
  2. $v = \sqrt 2 \ m/s$ $\omega = 0 \ rad /s$
  3. image-20241205172233322

image-20241205172245692

image-20241206135338227

image-20241206135357660

image-20241206135406474

image-20241206135418764

This post is licensed under CC BY 4.0 by the author.

Trending Tags